Stormwater ponds are stormwater storage practices that consist of a combination of a permanent pool, micropool, or shallow marsh that promote a good environment for gravitational settling, biological uptake and microbial activity. Ponds are widely applicable for most land uses and are best suited for larger drainage areas. Runoff from each new storm enters the pond and partially displaces pool water from previous storms. The pool also acts as a barrier to re-suspension of sediments and other pollutants deposited during prior storms. When sized properly, stormwater ponds have a residence time that ranges from many days to several weeks, which allows numerous pollutant removal mechanisms to operate. Stormwater ponds can also provide storage above the permanent pool to help meet stormwater management requirements for larger storms. Design variants include:

- P-1: Micropool extended detention pond
- P-2: Wet pond
- P-3: Wet extended detention pond

Stormwater ponds should be considered for use after all other upland runoff reduction opportunities have been exhausted and there is still a remaining treatment volume or runoff from larger storms (i.e. 2-year, 15-year or flood control events) to manage.

Stormwater ponds do not receive any stormwater retention value and should be considered only for management of larger storm events. Stormwater ponds have both community and environmental concerns (see Section 3.9.1 Pond Feasibility Criteria) that should be considered before choosing stormwater ponds for the appropriate stormwater practice onsite.
Figure 3.9.1. Wet Pond (P-2) Design Schematics.
Figure 3.9.2. Typical Extended Detention Pond (P-3) Details.
Chapter 3.9. Stormwater Ponds

3.9.1 Pond Feasibility Criteria

The following feasibility issues need to be considered when ponds are considered a final stormwater management practice of the treatment train.

Adequate Water Balance. Wet ponds must have enough water supplied from groundwater, runoff or baseflow so that the wet pools will not draw down by more than 2 feet after a 30-day summer drought. A simple water balance calculation must be performed using the equation provided in Section 3.9.4. Water Balance Testing). Section 3.10.4 Wetland Design Criteria.

Contributing Drainage Area. A contributing drainage area of 10 to 25 acres is typically recommended for ponds to maintain constant water elevations. Ponds can still function with drainage areas less than 10 acres, but designers should be aware that these “pocket” ponds will be prone to clogging, experience fluctuating water levels, and generate more nuisance conditions.

Space Requirements. The surface area of a pond will normally be at least 1% to 3% of its contributing drainage area, depending on the pond’s depth.

Site Topography. Ponds are best applied when the grade of contributing slopes is less than 15%.

Available Hydraulic Head. The depth of a pond is usually determined by the hydraulic head available on the site. The bottom elevation is normally the invert of the existing downstream conveyance system to which the pond discharges. Typically, a minimum of 6 to 8 feet of head are needed to hold the wet pool and any additional large storm storage or overflow capacity for a pond to function.

Minimum Setbacks. Office of Planning zoning requirements should be consulted to determine minimum setbacks to property lines and structures. Consideration of public space rules and review process, as prescribed and enforced by the District Department of Transportation, may be required. Generally, storage practices should be set back at least 10 feet from property lines, and 20 feet down-gradient from building foundations.

Proximity to Utilities. For an open pond system, no utility lines shall be permitted to cross any part of the embankment of a wet pool.

Depth-to-Water Table. The depth to the groundwater table is not a major constraint for wetponds, since a high water table can help maintain wetland conditions. However, groundwater inputs can also reduce the pollutant removal rates of ponds. Further, if the water table is close to the surface, it may make excavation difficult and expensive.

Soils. Highly permeable soils will make it difficult to maintain a healthy permanent pool. Soil infiltration tests need to be conducted at proposed pond sites to determine the need for a pond liner.
or other method to ensure a constant water surface elevation. Underlying soils of Hydrologic Soil Group (HSG) C or D should be adequate to maintain a permanent pool. Most HSG A soils and some HSG B soils will require a liner (See Table 3.9.1 below). Geotechnical tests should be conducted to determine the infiltration rates and other subsurface properties of the soils beneath the proposed pond.

Use of or Discharges to Natural Wetlands. Ponds cannot be located within jurisdictional waters, including wetlands, without obtaining a section 404 permit from the appropriate state or federal regulatory agency. In addition, the designer should investigate the wetland status of adjacent areas to determine if the discharge from the pond will change the hydroperiod of a downstream natural wetland (see Cappiella et al., 2006, for guidance on minimizing stormwater discharges to existing wetlands).

Perennial Streams. Locating ponds on perennial streams will require both a Section 401 and Section 404 permit from the appropriate state or federal regulatory agency.

Community and Environmental Concerns. Ponds can generate the following community and environmental concerns that need to be addressed during design:

- **Aesthetic Issues.** Many residents feel that ponds are an attractive landscape feature, promote a greater sense of community and are an attractive habitat for fish and wildlife. Designers should note that these benefits are often diminished where ponds are under-sized or have small contributing drainage areas.

- **Existing Forests.** Construction of a pond may involve extensive clearing of existing forest cover. Designers can expect a great deal of neighborhood opposition if they do not make a concerted effort to save mature trees during pond design and construction.

- **Safety Risk.** Pond safety is an important community concern, since both young children and adults have perished by drowning in ponds through a variety of accidents, including falling through thin ice cover. Gentle side slopes and safety benches should be provided to avoid potentially dangerous drop-offs, especially where ponds are located near residential areas.

- **Pollutant Concerns.** Ponds collect and store water and sediment to increase residence time that will increase the likelihood for contaminated water and sediments to be neutralized. However, poorly sized, maintained, and/or functioning ponds can export contaminated sediments and/or water to receiving waterbodies (Mallin, 2000; Mallin et al., 2001; Messersmith, 2007). Further, designers are cautioned that recent research on ponds has shown that some ponds can be hotspots or incubators for algae that generate harmful algal blooms (HABs).

- **Mosquito Risk.** Mosquitoes are not a major problem for larger ponds (Santana et al., 1994; Ladd and Frankenburg, 2003, Hunt et al, 2005). However, fluctuating water levels in smaller or under-sized ponds could pose some risk for mosquito breeding. Mosquito problems can be minimized through simple design features and maintenance operations described in MSSC (2005).
- **Geese and Waterfowl.** Ponds with extensive turf and shallow shorelines can attract nuisance populations of resident geese and other waterfowl, whose droppings add to the nutrient and bacteria loads, thus reducing the removal efficiency for those pollutants. Several design and landscaping features can make ponds much less attractive to geese (see Schueler, 1992).

3.9.2 Pond Conveyance Criteria

Internal Slope. The longitudinal slope of the pond bottom should be at least 0.5% to 1% to facilitate maintenance.

Primary Spillway. The spillway shall be designed with acceptable anti-flotation, anti-vortex and trash rack devices. The spillway must generally be accessible from dry land. When reinforced concrete pipe is used for the principal spillway to increase its longevity, “O-ring” gaskets (ASTM C361) shall be used to create watertight joints.

Non-Clogging Low Flow Orifice. A low flow orifice must be provided that is adequately protected from clogging by either an acceptable external trash rack or by internal orifice protection that may allow for smaller diameters. Orifices less than 3 inches in diameter may require extra attention during design, to minimize the potential for clogging.

- One option is a submerged reverse-slope pipe that extends downward from the riser to an inflow point 1 foot below the normal pool elevation.
- Alternative methods must employ a broad crested rectangular V-notch (or proportional) weir, protected by a half-round CMP that extends at least 12 inches below the normal pool elevation.

Emergency Spillway. Ponds must be constructed with overflow capacity to pass the 100-year design storm event through either the primary spillway or a vegetated or armored emergency spillway unless waived by DDOE. The emergency spillway should be cut in natural ground or, if cut in fill, must be lined with filter cloth beneath PVC-coated gabion baskets.

Adequate Outfall Protection. The design must specify an outfall that will be stable for the 15-year design storm event. The channel immediately below the pond outfall must be modified to prevent erosion and conform to natural dimensions in the shortest possible distance. This is typically done by placing appropriately sized riprap over filter fabric, which can reduce flow velocities from the principal spillway to non-erosive levels (3.5 to 5.0 fps) depending on the channel lining material. Flared pipe sections, which discharge at or near the stream invert or into a step pool arrangement, should be used at the spillway outlet.

When the discharge is to a manmade pipe or channel system, the system must be adequate to convey the required design storm peak discharge.

If a pond daylights to a channel with dry weather flow, care should be taken to minimize tree
clearing along the downstream channel, and to reestablish a forested riparian zone in the shortest possible distance. Excessive use of rip-rap should be avoided.

The final release rate of the facility shall be modified if any increase in flooding or stream channel erosion would result at a downstream structure, highway, or natural point of restricted streamflow (see *Section 2.4 Additional Stormwater Management Requirements*).

Inlet Protection. Inflow points into the pond should be stabilized to ensure that non-erosive conditions exist during storm events up to the overbank flood event (i.e., the 15-year storm event). Inlet pipe inverts should generally be located at or slightly below the permanent pool elevation. A forebay shall be provided at each inflow location, unless the inlet is submerged or inflow provides less than 10% of the total design storm inflow to the pond.

Dam Safety Permits. The designer should verify that the embankment is not required to obtain any appropriate Dam Safety permits or approvals.

3.9.3 Pond Pretreatment Criteria

Sediment forebays are considered to be an integral design feature to maintain the longevity of all ponds. A forebay must be located at each major inlet to trap sediment and preserve the capacity of the main treatment cell. The following criteria apply to forebay design:

- A major inlet is defined as an individual storm drain inlet pipe or open channel serving at least 10% of the pond’s contributing drainage area.
- The forebay consists of a separate cell, formed by an acceptable barrier (e.g., an earthen berm, concrete weir, gabion baskets, etc.).
- The forebay should be between 4 and 6 feet deep and must be equipped with a variable width aquatic bench for safety purposes. The aquatic bench should be 4 to 6 feet wide at a depth of 1 to 2 feet below the water surface. Small forebays may require alternate geometry to achieve the goals of pre-treatment and safety within a small area.
- The forebay shall be sized to contain 0.1 inches of runoff from the contributing drainage impervious area. The relative size of individual forebays should be proportional to the percentage of the total inflow to the pond.
- The bottom of the forebay may be hardened (e.g., with concrete, asphalt, or grouted riprap) to make sediment removal easier.
- The forebay should be equipped with a metered rod in the center of the pool (as measured lengthwise along the low flow water travel path) for long-term monitoring of sediment accumulation.
• Exit velocities from the forebay shall be non-erosive or an armored overflow shall be provided. Non-erosive velocities are 4 feet per second for the two-year event, and 6 feet per second for the 15-year event.
• Direct maintenance access for appropriate equipment shall be provided to the each forebay.
• The bottom of the forebay may be hardened to make sediment removal easier.

3.9.4 Pond Design Criteria

Pond Storage Design: The pond permanent pool should be sized to store a volume equivalent to the SWRv. Volume storage may be provided in multiple cells. Performance is enhanced when multiple treatment pathways are provided by using multiple cells, longer flowpaths, high surface area to volume ratios, complex microtopography, and/or redundant treatment methods (combinations of pool, ED, and marsh).

Pond Geometry: Pond designs should have an irregular shape and a long flow path from inlet to outlet, to increase water residence time and pond performance. The minimum length to width ratio (i.e., length relative to width) for ponds is 1.5:1. Greater flowpaths and irregular shapes are recommended. Internal berms, baffles, or vegetated peninsulas can be used to extend flow paths and/or create multiple pond cells.

Permanent Pool Depth: The maximum depth of the permanent pool should not generally exceed eight feet unless the pond is designed for multiple uses.

Micropool: A micropool is a three to six foot deep pool used to protect the low flow pipe from clogging and to prevent sediment resuspension. For micropool extended detention ponds, the micropool shall be designed to hold at least 10 to 25% of the 1.2-inch storm event.

Side Slopes: Side slopes for ponds should generally have a gradient no steeper than 3H:1V. Mild slopes promote better establishment and growth of vegetation and provide for easier maintenance and a more natural appearance.

Maximum Extended Detention Levels: The total storage, including any ponding for larger flooding events (100-year storm) should not extend more than 5 feet above the pond permanent pool unless specific design enhancements to ensure side slope stability, safety, and maintenance are identified and approved.

Stormwater Pond Benches: The perimeter of all pool areas greater than 4 feet in depth must be surrounded by two benches, as follows:
• A Safety Bench is a flat bench located just outside of the perimeter of the permanent pool to allow for maintenance access and reduce safety risks. Except when the stormwater pond side
slopes are 5H:1V or flatter, provide a safety bench that generally extends 8 to 15 feet outward from the normal water edge to the toe of the stormwater pond side slope. The maximum slope of the safety bench is 5%.

- An Aquatic Bench is a shallow area just inside the perimeter of the normal pool that promotes growth of aquatic and wetland plants. The bench also serves as a safety feature, reduces shoreline erosion, and conceals floatable trash. Incorporate an aquatic bench that generally extends up to 10 feet inward from the normal shoreline, has an irregular configuration, and extends a maximum depth of 18 inches below the normal pool water surface elevation.

Liners. When a stormwater pond is located over highly permeable soils or fractured bedrock, a liner may be needed to sustain a permanent pool of water. If geotechnical tests confirm the need for a liner, acceptable options include the following: (1) a clay liner following the specifications outlined in Table 3.9.1 below; (2) a 30 mil poly-liner; (3) bentonite; (4) use of chemical additives; or (5) an engineering design, as approved on a case-by-case basis by the local review authority. A clay liner should have a minimum thickness of 12 inches with an additional 12 inch layer of compacted soil above it, and it must meet the specifications outlined in Table 3.9.1. Other synthetic liners can be used if the designer can supply supporting documentation that the material will achieve the required performance.

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability</td>
<td>ASTM D-2434</td>
<td>Cm/sec</td>
<td>1×10^{-6}</td>
</tr>
<tr>
<td>Plasticity Index of Clay</td>
<td>ASTM D-423/424</td>
<td>%</td>
<td>Not less than 15</td>
</tr>
<tr>
<td>Liquid Limit of Clay</td>
<td>ASTM D-2216</td>
<td>%</td>
<td>Not less than 30</td>
</tr>
<tr>
<td>Clay Particles Passing</td>
<td>ASTM D-422</td>
<td>%</td>
<td>Not less than 30</td>
</tr>
<tr>
<td>Clay Compaction</td>
<td>ASTM D-2216</td>
<td>%</td>
<td>95% of standard proctor density</td>
</tr>
</tbody>
</table>

Required Geotechnical Testing: Soil borings should be taken below the proposed embankment, in the vicinity of the proposed outlet area, and in at least two locations within the proposed pond treatment area. Soil boring data is needed to (1) determine the physical characteristics of the excavated material, (2) determine its adequacy for use as structural fill or spoil, (3) provide data for structural designs of the outlet works (e.g., bearing capacity and buoyancy), (4) determine compaction/composition needs for the embankment (5) determine the depth to groundwater and bedrock and (6) evaluate potential infiltration losses (and the potential need for a liner).

Non-clogging Low Flow (Extended Detention) Orifice. The low flow ED orifice shall be adequately protected from clogging by an acceptable external trash rack. The preferred method is a submerged reverse-slope pipe that extends downward from the riser to an inflow point one foot below the normal pool elevation. Alternative methods are to employ a broad crested rectangular, V-notch, or proportional weir, protected by a half-round CMP that extends at least 12" below the...
normal pool.

Riser in Embankment. The riser should be located within the embankment for maintenance access, safety, and aesthetics. Access to the riser is to be provided by lockable manhole covers, and manhole steps within easy reach of valves and other controls. The principal spillway opening can be "fenced" with pipe or rebar at 8" intervals for safety purposes.

Trash Racks. Trash racks shall be provided for low-flow pipes and for riser openings not having anti-vortex devices.

Pond Drain. Ponds should have a drain pipe that can completely or partially drain the permanent pool. In cases where a low level drain is not feasible (such as in an excavated pond), a pump well should be provided to accommodate a temporary pump intake when needed to drain the pond.
- The drain pipe should have an upturned elbow or protected intake within the pond to help keep it clear of sediment deposition, and a diameter capable of draining the pond within 24 hours.
- The pond drain must be equipped with an adjustable valve located within the riser, where it will not be normally inundated and can be operated in a safe manner. Care should be exercised during pond drawdowns to prevent downstream discharge of sediments or anoxic water and rapid drawdown. The approving authority shall be notified before draining a pond.

Adjustable Gate Valve. Both the outlet pipe and the pond drain should be equipped with an adjustable gate valve (typically a handwheel activated knife gate valve) or pump well and be sized one pipe size greater than the calculated design diameter. Valves should be located inside of the riser at a point where they (a) will not normally be inundated and (b) can be operated in a safe manner. To prevent vandalism, the handwheel should be chained to a ringbolt, manhole step or other fixed object.

Safety Features.
- The principal spillway opening must be designed and constructed to prevent access by small children.
- End walls above pipe outfalls greater than 48 inches in diameter must be fenced to prevent a hazard.
- Storage practices should incorporate an additional 1 foot of freeboard above the emergency spillway, or 2 feet of freeboard if design has no emergency spillway, for the maximum Q\textsubscript{r} design storm unless more stringent Dam Safety requirements apply.
- The emergency spillway must be located so that downstream structures will not be impacted by spillway discharges.
- Both the safety bench and the aquatic bench should be landscaped with vegetation that hinders or prevents access to the pool.
- Warning signs prohibiting swimming should be posted.
• Where permitted, fencing of the perimeter of ponds is discouraged. The preferred method to reduce risk is to manage the contours of the stormwater pond to eliminate drop-offs or other safety hazards. Fencing is required at or above the maximum water surface elevation in the rare situations when the pond slope is a vertical wall.

• Side slopes to the pond shall not be steeper than 3H:1V, and shall terminate on a 15 ft wide safety bench. Both the safety bench and the aquatic bench may be landscaped to prevent access to the pool. The bench requirement may be waived if slopes are 4H:1V or flatter.

Maintenance Reduction Features: The following pond maintenance issues can be addressed during the design, in order to make on-going maintenance easier:

• **Maintenance Access.** All ponds must be designed so as to be accessible to annual maintenance. Good access is needed so crews can remove sediments, make repairs and preserve pond treatment capacity.
 o Adequate maintenance access must extend to the forebay, safety bench, riser, and outlet structure and must have sufficient area to allow vehicles to turn around.
 o The riser should be located within the embankment for maintenance access, safety and aesthetics. Access to the riser should be provided by lockable manhole covers and manhole steps within easy reach of valves and other controls.
 o Access roads must (1) be constructed of load-bearing materials or be built to withstand the expected frequency of use, (2) have a minimum width of 15 feet, and (3) have a profile grade that does not exceed 5:1.
 o A maintenance right-of-way or easement must extend to the stormwater pond from a public or private road.

Material Specifications: ED ponds are generally constructed with materials obtained on-site, except for the plant materials, inflow and outflow devices (e.g., piping and riser materials), possibly stone for inlet and outlet stabilization, and filter fabric for lining banks or berms.

Pond Sizing. Stormwater ponds can be designed to capture and treat the remaining stormwater discharged from upstream practices from the design storm (SWRv). Additionally, stormwater ponds should be sized to control peak flow rates from the 2-year and 15-year frequency storm event or other design storms as required. Design calculations must ensure that the post-development peak discharge does not exceed the pre-development peak discharge. See *Section 2.5. Hydrology Methods* for a summary of acceptable hydrological methodologies and models.

For treatment train designs where upland practices are utilized for treatment of the SWRv, designers can use a site-adjusted Rv or CN that reflects the volume reduction of upland practices to compute the Qp₂ and Qp₁₅ that must be treated by the stormwater pond.

The pond permanent pool should be sized to store a volume equivalent to the SWRv.
The storage volume (S_v) of the practice is equal to the volume provided by the pond permanent pool (Equation 3.9.1). The total S_v cannot exceed the design SWRv.

Equation 3.9.1. Pond Storage Volume

$$S_v = \text{Pond permanent pool volume}$$

Water Balance Testing: A water balance calculation is recommended to document that sufficient inflows to wet ponds and wet ED ponds exist to compensate for combined infiltration and evapo-transpiration losses during a 30-day summer drought without creating unacceptable drawdowns (see Equation 3.9.1, adapted from Hunt et al., 2007). The recommended minimum pool depth to avoid nuisance conditions may vary; however, it is generally recommended that the water balance maintain a minimum 24-inch reservoir.

Equation 3.9.2. Water Balance Equation for Acceptable Water Depth in a Wet Pond

$$DP > ET + INF + RES – MB$$

Where:

- **DP** = Average design depth of the permanent pool (inches)
- **ET** = Summer evapo-transpiration rate (inches) (assume 8 inches)
- **INF** = Monthly infiltration loss (assume 7.2 @ 0.01 inch/hour)
- **RES** = Reservoir of water for a factor of safety (assume 24 inches)
- **MB** = Measured baseflow rate to the pond, if any (convert to inches)

Design factors that will alter this equation are the measurements of seasonal base flow and infiltration rate. The use of a liner could eliminate or greatly reduce the influence of infiltration. Similarly, land use changes in the upstream watershed could alter the base flow conditions over time (e.g., urbanization and increased impervious cover).

Translating the baseflow to inches refers to the depth within the pond. Therefore, **Equation 3.9.2** can be used to convert the baseflow, measured in cubic feet per second (ft³/s), to pond-inches:

Equation 3.9.3. Baseflow Conversion

$$\text{Pond inches} = \left(\frac{MB \text{ in ft}^3/\text{s}}{2.592E6 \text{ ft}^3/\text{month}} \right) \times 12''/\text{ft} / \text{SA of Pond (ft}^2)$$

Where:

- **2.592E6** = Conversion factor: ft³/s to ft³/month.
- **SA** = surface area of pond in ft²

3.9.5 Pond Landscaping Criteria
Pond Benches. The perimeter of all deep pool areas (four feet or greater in depth) should be surrounded by two benches:

- A safety bench that extends 8 to 15 feet outward from the normal water edge to the toe of the pond side slope. The maximum slope of the safety bench shall be 6%.
- An aquatic bench that extends up to 10 feet inward from the normal shoreline and has a maximum depth of 18” below the normal pool water surface elevation.

Landscaping and Planting Plan. A landscaping plan must be provided that indicates the methods used to establish and maintain vegetative coverage in the pond and its buffer (see section 3.5.5 Bioretention Landscaping Criteria for extended landscaping and planting details). Minimum elements of a landscaping plan include the following:

- Delineation of pondscaping zones within both the pond and buffer
- Selection of corresponding plant species
- The planting plan
- The sequence for preparing the wetland benches (including soil amendments, if needed)
- Sources of native plant material
- The landscaping plan should provide elements that promote diverse wildlife and waterfowl use within the stormwater wetland and buffers.
- Woody vegetation may not be planted or allowed to grow within 15 feet of the toe of the embankment nor within 25 feet from the principal spillway structure.
- A vegetated buffer should be provided that extends at least 25 feet outward from the maximum water surface elevation of the pond. Permanent structures (e.g., buildings) should not be constructed within the buffer area. Existing trees should be preserved in the buffer area during construction.
- The soils in the stormwater buffer area are often severely compacted during the construction process, to ensure stability. The density of these compacted soils can be so great that it effectively prevents root penetration and, therefore, may lead to premature mortality or loss of vigor. As a rule of thumb, planting holes should be three times deeper and wider than the diameter of the root ball for ball-and-burlap stock, and five times deeper and wider for container-grown stock.
- Avoid species that require full shade, or are prone to wind damage. Extra mulching around the base of trees and shrubs is strongly recommended as a means of conserving moisture and suppressing weeds.

For more guidance on planting trees and shrubs in pond buffers, consult Cappiella et al (2006).

3.9.6. Pond Construction Sequence
The following is a typical construction sequence to properly install a stormwater pond. The steps may be modified to reflect different pond designs, site conditions, and the size, complexity and configuration of the proposed facility.

Step 1: Use of Ponds for Erosion and Sediment Control. A pond may serve as a sediment basin during project construction. If this is done, the volume should be based on the more stringent sizing rule (erosion and sediment control requirement vs. storage volume requirement). Installation of the permanent riser should be initiated during the construction phase, and design elevations should be set with final cleanout of the sediment basin and conversion to the post-construction pond in mind. The bottom elevation of the pond should be lower than the bottom elevation of the temporary sediment basin. Appropriate procedures should be implemented to prevent discharge of turbid waters when the basin is being converted into a pond.

Approval from DDOE must be obtained before any sediment pond can be used as for stormwater management.

Step 2: Stabilize the Drainage Area. Ponds should only be constructed after the contributing drainage area to the pond is completely stabilized. If the proposed pond site will be used as a sediment trap or basin during the construction phase, the construction notes should clearly indicate that the facility will be de-watered, dredged and re-graded to design dimensions after the original site construction is complete.

Step 3: Assemble Construction Materials on-site, make sure they meet design specifications, and prepare any staging areas.

Step 4: Clear and Strip the project area to the desired sub-grade.

Step 5: Install Erosion and Sediment Controls prior to construction, including temporary de-watering devices and stormwater diversion practices. All areas surrounding the pond that are graded or denuded during construction must be planted with turf grass, native plantings, or other approved methods of soil stabilization.

Step 6: Excavate the Core Trench and Install the Spillway Pipe.

Step 7: Install the Riser or Outflow Structure, and ensure the top invert of the overflow weir is constructed level at the design elevation.

Step 8: Construct the Embankment and Any Internal Berms in 8- to 12-inch lifts, compact the lifts with appropriate equipment.
Step 9: Excavate/Grade until the appropriate elevation and desired contours are achieved for the bottom and side slopes of the pond.

Step 10: Construct the Emergency Spillway in cut or structurally stabilized soils.

Step 11: Install Outlet Pipes, including downstream rip-rap apron protection.

Step 12: Stabilize Exposed Soils with temporary seed mixtures appropriate for the pond buffer. All areas above the normal pool elevation should be permanently stabilized by hydroseeding or seeding over straw.

Step 13: Plant the Pond Buffer Area, following the pondscaping plan (see **Section 3.9.5 Pond Landscaping Criteria**).

Construction Inspection. Multiple inspections are critical to ensure that stormwater ponds are properly constructed. Inspections are recommended during the following stages of construction:

- Pre-construction meeting
- Initial site preparation (including installation of E&S controls)
- Excavation/Grading (interim and final elevations)
- Installation of the embankment, the riser/primary spillway, and the outlet structure
- Implementation of the pondscaping plan and vegetative stabilization
- Final inspection (develop a punchlist for facility acceptance)

A construction phase inspection checklist for ponds can be found in **Appendix L**.

To facilitate maintenance, contractors should measure the actual constructed pond depth at three areas within the permanent pool (forebay, mid-pond and at the riser), and they should mark and geo-reference them on an as-built drawing. This simple data set will enable maintenance inspectors to determine pond sediment deposition rates in order to schedule sediment cleanouts.

3.9.7 Pond Maintenance Criteria

Maintenance is needed so stormwater ponds continue to operate as designed on a long-term basis. Ponds normally have fewer routine maintenance requirements than other stormwater control measures. Stormwater pond maintenance activities vary regarding the level of effort and expertise required to perform them. Routine stormwater pond maintenance, such as mowing and removing debris and trash, is needed several times each year (See **Table 3.9.2**). More significant maintenance (e.g., removing accumulated sediment) is needed less frequently but requires more skilled labor and special equipment. Inspection and repair of critical structural features (e.g., embankments and risers) needs to be performed by a qualified professional (e.g., a structural engineer) who has experience in
the construction, inspection, and repair of these features.

Sediment removal in the pond pretreatment forebay should occur every 5 to 7 years or after 50% of total forebay capacity has been lost. The designer should also check to see whether removed sediments can be spoiled on-site or must be hauled away. Sediments excavated from ponds are not usually considered toxic or hazardous. They can be safely disposed of by either land application or land filling. Sediment testing may be needed prior to sediment disposal if the retrofit serves a hotspot land use.

Table 3.9.2. Typical Pond Maintenance Tasks and Frequency

<table>
<thead>
<tr>
<th>Maintenance Items</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inspect the site at least twice after storm events that exceed a 1/2-inch of rainfall.</td>
<td>During establishment, as needed (first year)</td>
</tr>
<tr>
<td>• Plant the aquatic benches with emergent wetland species, following the planting recommendations contained in section 3.10.5 Wetland Landscaping Criteria.</td>
<td></td>
</tr>
<tr>
<td>• Stabilize any bare or eroding areas in the contributing drainage area or around the pond buffer</td>
<td></td>
</tr>
<tr>
<td>• Water trees and shrubs planted in the pond buffer during the first growing season. In general, consider watering every 3 days for first month, and then weekly during the remainder of the first growing season (April - October), depending on rainfall.</td>
<td></td>
</tr>
<tr>
<td>• Mowing – twice a year</td>
<td>Quarterly or after major storms (>1 inch of rainfall)</td>
</tr>
<tr>
<td>• Remove debris and blockages</td>
<td></td>
</tr>
<tr>
<td>• Repair undercut, eroded, and bare soil areas</td>
<td></td>
</tr>
<tr>
<td>• Mowing of the buffer and pond embankment</td>
<td>Twice a year</td>
</tr>
<tr>
<td>• Shoreline cleanup to remove trash, debris and floatables</td>
<td>Annually</td>
</tr>
<tr>
<td>• A full maintenance inspection</td>
<td></td>
</tr>
<tr>
<td>• Open up the riser to access and test the valves</td>
<td></td>
</tr>
<tr>
<td>• Repair broken mechanical components, if needed</td>
<td></td>
</tr>
<tr>
<td>• Pond buffer and aquatic bench reinforcement plantings</td>
<td>One time – during the second year following construction</td>
</tr>
<tr>
<td>• Forebay Sediment Removal</td>
<td>Every 5 to 7 years</td>
</tr>
<tr>
<td>• Repair pipes, the riser and spillway, as needed</td>
<td>From 5 to 25 years</td>
</tr>
</tbody>
</table>

Maintenance plans should clearly outline how vegetation in the pond and its buffer will be managed or harvested in the future. Periodic mowing of the stormwater buffer is only required along maintenance rights-of-way and the embankment. The remaining buffer can be managed as a meadow (mowing every other year) or forest. The maintenance plan should schedule a shoreline cleanup at least once a year to remove trash and floatables.
Chapter 3.9. Stormwater Ponds

Maintenance of a pond is driven by annual inspections that evaluate the condition and performance of the pond. Based on inspection results, specific maintenance tasks will be triggered. An example maintenance inspection checklist for stormwater ponds can be found in Appendix M.

A declaration of covenants that includes all maintenance responsibilities to ensure the continued stormwater performance for the BMP is required. The declaration of covenants specifies the property owner’s primary maintenance responsibilities, and authorizes DDOE staff to access the property for inspection or corrective action in the event the proper maintenance is not performed. The declaration of covenants is attached to the deed of the property. An example form is provided at the end of Chapter 5 though variations will exist for scenarios where stormwater crosses property lines. The covenant is between the property and the District Government. It is submitted through the Office of the Attorney General (OAG). All SWMPs have a maintenance agreement stamp that must be signed for a building permit to proceed. A maintenance schedule must appear on the SWMP. Additionally, a maintenance schedule is required in schedule c of the declaration of covenants.

Covenants are not required on government properties, but maintenance responsibilities must be defined through a partnership agreement or a memorandum of understanding.

Waste material from the repair, maintenance, or removal of a BMP or land cover change shall be removed, and the maintenance contractor shall submit a written report to DDOE within forty-eight (48) hours after disposing of the waste material. The report shall include:

(a) The name, address, phone number, and business license number of the contractor transporting the waste materials;
(b) Date of removal;
(c) The address of the BMP;
(d) Type of BMP serviced;
(e) Amount and type of waste material removed;
(f) The name and location of the facility where the waste material was disposed of; and
(g) A sworn statement that disposal was in compliance with applicable federal and District law.
3.9.8 Pond Stormwater Compliance Calculations

Stormwater ponds receive 0% retention value and 50% TSS EMC reduction for the amount of storage volume (Sv) provided by the practice (Table 3.9.3).

<table>
<thead>
<tr>
<th>Table 3.9.3. Pond Retention Value and Pollutant Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Value</td>
</tr>
<tr>
<td>Additional Pollutant Removal</td>
</tr>
<tr>
<td>0%</td>
</tr>
<tr>
<td>50% TSS EMC reduction for Sv provided</td>
</tr>
</tbody>
</table>

3.9.9 References

